Code
library(readxl)
library(tidyverse)
library(janitor)
library(gt)
library(moments)
Evaluaciones agropecuarias
library(readxl)
library(tidyverse)
library(janitor)
library(gt)
library(moments)
<- read_excel("datos/Base agrícola 2019 - 2023.xlsx",
datos skip = 6) |>
clean_names()
|> head() datos
|>
datos count(cultivo, sort = TRUE, name = "total")
<-
df_tomate |>
datos filter(cultivo == "Tomate")
df_tomate
$rendimiento_t_ha |> mean() df_tomate
[1] 40.22106
mean(df_tomate$rendimiento_t_ha)
[1] 40.22106
|>
df_tomate pull(rendimiento_t_ha) |>
mean()
[1] 40.22106
<- c(40.14, 38.67, 28.98, 19.39, NA)
ejemplo
|> mean(na.rm = TRUE) # remover NAs antes de hacer el cálculo ejemplo
[1] 31.795
$municipio |> mean() df_tomate
[1] NA
|>
df_tomate group_by(departamento) |>
summarise(
promedio_rto = mean(rendimiento_t_ha),
prom_area_sem = mean(area_sembrada_ha),
prom_area_cos = mean(area_cosechada_ha)
|>
) arrange(desc(promedio_rto)) |>
mutate(prom_area_perdia = prom_area_sem - prom_area_cos)
<-
tabla_resumen1 |>
df_tomate group_by(departamento, ano) |>
reframe(promedio_rto = mean(rendimiento_t_ha)) |>
pivot_wider(names_from = ano,
values_from = promedio_rto) |>
relocate(departamento, "2019", everything())
tabla_resumen1
|>
tabla_resumen1 gt(rowname_col = "departamento") |>
tab_header(title = "Promedios de rendimiento en tomate",
subtitle = "Años 2019 a 2023") |>
fmt_number(decimals = 2)
Promedios de rendimiento en tomate | |||||
---|---|---|---|---|---|
Años 2019 a 2023 | |||||
2019 | 2020 | 2021 | 2022 | 2023 | |
Amazonas | NA | 2.30 | 3.00 | 3.00 | 3.00 |
Antioquia | 70.87 | 65.10 | 60.95 | 63.53 | 64.64 |
Arauca | 9.00 | NA | NA | NA | NA |
Atlántico | 17.87 | 12.12 | 11.62 | 11.58 | 11.75 |
Bolívar | 8.50 | 6.00 | 8.00 | 5.67 | 5.67 |
Boyacá | 51.33 | 50.69 | 46.59 | 51.80 | 54.52 |
Caldas | 34.08 | 40.93 | 36.14 | 37.99 | 39.57 |
Caquetá | 4.00 | 35.55 | 4.87 | 9.67 | 9.58 |
Casanare | 40.00 | 33.33 | 45.00 | 3.00 | 71.00 |
Cauca | 30.43 | 31.38 | 32.86 | 33.56 | 34.83 |
Cesar | 21.60 | 43.09 | 39.43 | 37.58 | 33.17 |
Chocó | 3.75 | 2.80 | 10.16 | 17.80 | 18.00 |
Cundinamarca | 33.80 | 34.98 | 35.35 | 42.17 | 43.21 |
Córdoba | 8.00 | 4.33 | 4.40 | 3.50 | 12.00 |
Huila | 16.89 | 17.85 | 17.81 | 19.57 | 20.37 |
La Guajira | 12.25 | 9.68 | 9.61 | 9.25 | 9.45 |
Magdalena | 13.75 | 12.97 | 13.17 | 13.67 | 13.48 |
Meta | 29.74 | 26.25 | 20.87 | 16.12 | 17.50 |
Nariño | 51.05 | 47.03 | 47.52 | 51.92 | 62.78 |
Norte de Santander | 38.78 | 38.46 | 32.52 | 32.90 | 35.99 |
Putumayo | 34.56 | NA | NA | 65.00 | 42.00 |
Quindío | 37.43 | 35.33 | 31.12 | 41.50 | 51.65 |
Risaralda | 53.67 | 40.88 | 73.50 | 76.86 | 84.42 |
Santander | 36.62 | 34.18 | 32.35 | 35.77 | 38.88 |
Sucre | NA | NA | 1.50 | NA | NA |
Tolima | 29.80 | 26.20 | 30.26 | 41.17 | 44.37 |
Valle del Cauca | 25.37 | 29.51 | 27.60 | 33.05 | 46.20 |
Vichada | NA | NA | NA | 17.00 | NA |
weighted.mean(x = df_tomate$rendimiento_t_ha,
w = df_tomate$area_sembrada_ha)
[1] 47.68841
|>
df_tomate group_by(departamento) |>
reframe(prom_rto_pond = weighted.mean(x = rendimiento_t_ha, w = area_sembrada_ha)) |>
arrange(desc(prom_rto_pond))
median(df_tomate$rendimiento_t_ha)
[1] 28
|>
df_tomate group_by(departamento) |>
reframe(
mediana_rto = median(rendimiento_t_ha)
|>
) arrange(desc(mediana_rto))
<- function(x) {
moda = unique(x)
ux = tabulate(match(x, ux))
tab == max(tab)]
ux[tab
}
moda(df_tomate$rendimiento_t_ha)
[1] 20
|>
df_tomate group_by(departamento) |>
reframe(moda_rto = moda(rendimiento_t_ha)) |>
arrange(desc(moda_rto))
|>
df_tomate group_by(departamento) |>
reframe(
mediana_rto = median(rendimiento_t_ha),
promedio_rto = mean(rendimiento_t_ha),
moda_rto = moda(rendimiento_t_ha),
n_datos = n()
|>
) arrange(desc(mediana_rto))
$rendimiento_t_ha |>
df_tomatequantile(probs = 0.95)
95%
117.7
$rendimiento_t_ha |>
df_tomatequantile(probs = c(0.01, 0.02, 0.03, 0.98, 0.99, 1))
1% 2% 3% 98% 99% 100%
1.0000 2.0000 3.6178 125.0000 140.0000 188.0000
<- seq(from = 0, to = 1, by = 0.01)
percentiles
$rendimiento_t_ha |>
df_tomatequantile(probs = percentiles)
0% 1% 2% 3% 4% 5% 6% 7%
0.0000 1.0000 2.0000 3.6178 5.0000 5.8000 6.2468 7.0000
8% 9% 10% 11% 12% 13% 14% 15%
7.5000 8.0000 9.0000 9.6320 10.0000 10.0000 10.5000 12.0000
16% 17% 18% 19% 20% 21% 22% 23%
12.0000 12.0000 14.0000 14.5560 15.0000 15.0000 15.0000 16.0000
24% 25% 26% 27% 28% 29% 30% 31%
16.0000 16.7350 17.0000 17.0000 18.0000 18.0000 18.0000 18.5000
32% 33% 34% 35% 36% 37% 38% 39%
19.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 21.0000
40% 41% 42% 43% 44% 45% 46% 47%
22.0000 23.0000 23.3508 24.0000 25.0000 25.0000 25.0000 25.0000
48% 49% 50% 51% 52% 53% 54% 55%
25.2640 26.6598 28.0000 28.0000 29.0000 30.0000 30.0000 30.0000
56% 57% 58% 59% 60% 61% 62% 63%
30.0000 30.0000 31.2500 33.0000 35.0000 35.0000 35.0000 37.0000
64% 65% 66% 67% 68% 69% 70% 71%
40.0000 40.0000 40.0000 42.0000 45.0000 47.0000 48.0000 50.0000
72% 73% 74% 75% 76% 77% 78% 79%
50.0000 50.0000 54.0000 55.0000 60.0000 60.0000 60.0000 65.0000
80% 81% 82% 83% 84% 85% 86% 87%
68.0000 70.0000 75.0000 80.0000 80.0000 80.0000 81.0000 85.0000
88% 89% 90% 91% 92% 93% 94% 95%
90.0000 90.0000 93.0000 98.0000 100.0000 108.0000 110.0000 117.7000
96% 97% 98% 99% 100%
120.0000 120.0000 125.0000 140.0000 188.0000
|>
df_tomate group_by(departamento) |>
reframe(
percentil5 = quantile(rendimiento_t_ha, probs = 0.05),
percentil95 = quantile(rendimiento_t_ha, probs = 0.95),
n_datos = n()
|>
) arrange(desc(percentil95))
|>
df_tomate filter(periodo == "2023A") |>
filter(desagregacion_cultivo == "Tomate invernadero") |>
group_by(departamento) |>
reframe(
percentil5 = quantile(rendimiento_t_ha, probs = 0.05),
percentil95 = quantile(rendimiento_t_ha, probs = 0.95),
n_datos = n()
|>
) arrange(desc(percentil95))
<- seq(from = 0, to = 1, by = 0.1)
deciles
$rendimiento_t_ha |>
df_tomatequantile(probs = deciles)
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0 9 15 18 22 28 35 48 68 93 188
<- seq(from = 0, to = 1, by = 0.25)
cuartiles
$rendimiento_t_ha |>
df_tomatequantile(probs = cuartiles)
0% 25% 50% 75% 100%
0.000 16.735 28.000 55.000 188.000
summary(df_tomate$rendimiento_t_ha)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 16.73 28.00 40.22 55.00 188.00
$rendimiento_t_ha |>
df_tomatevar()
[1] 1159.83
|>
df_tomate filter(desagregacion_cultivo == "Tomate") |>
group_by(departamento) |>
reframe(
varianza_rto = var(rendimiento_t_ha),
n_datos = n()
|>
) arrange(desc(varianza_rto))
|>
df_tomate filter(desagregacion_cultivo == "Tomate") |>
pull(rendimiento_t_ha) |>
mean()
[1] 23.25134
|>
df_tomate filter(desagregacion_cultivo == "Tomate") |>
pull(rendimiento_t_ha) |>
sd()
[1] 16.19089
23.25134 - 16.19089
[1] 7.06045
23.25134 + 16.19089
[1] 39.44223
16.19089 / 23.25134) * 100 (
[1] 69.63422
|>
df_tomate filter(desagregacion_cultivo == "Tomate") |>
group_by(departamento) |>
reframe(
promedio_rto = mean(rendimiento_t_ha),
de_rto = sd(rendimiento_t_ha),
n_datos = n()
|>
) mutate(cv_rto = (de_rto / promedio_rto) * 100) |>
relocate(departamento, promedio_rto, de_rto, cv_rto, n_datos) |>
arrange(desc(promedio_rto))
|>
df_tomate filter(desagregacion_cultivo == "Tomate") |>
pull(rendimiento_t_ha) |>
range()
[1] 0 160
|>
df_tomate filter(desagregacion_cultivo == "Tomate") |>
pull(rendimiento_t_ha) |>
IQR()
[1] 17.8
|>
df_tomate filter(desagregacion_cultivo == "Tomate") |>
group_by(departamento) |>
reframe(
promedio_rto = mean(rendimiento_t_ha),
de_rto = sd(rendimiento_t_ha),
RIQ = IQR(rendimiento_t_ha),
n_datos = n()
|>
) mutate(cv_rto = (de_rto / promedio_rto) * 100) |>
relocate(departamento, promedio_rto, de_rto, cv_rto, RIQ, n_datos) |>
arrange(desc(promedio_rto))
skewness(df_tomate$rendimiento_t_ha)
[1] 1.307047
hist(df_tomate$rendimiento_t_ha)
|>
df_tomate group_by(desagregacion_cultivo) |>
reframe(coef_asimetria = skewness(rendimiento_t_ha))
|>
df_tomate filter(desagregacion_cultivo == "Tomate invernadero") |>
pull(rendimiento_t_ha) |>
hist()
kurtosis(df_tomate$rendimiento_t_ha)
[1] 4.072745
|>
df_tomate group_by(desagregacion_cultivo) |>
reframe(coef_asimetria = skewness(rendimiento_t_ha),
coef_curtosis = kurtosis(rendimiento_t_ha))
|>
datos count(cultivo, sort = TRUE, name = "frec_absoluta") |>
mutate(frec_relativa = frec_absoluta / sum(frec_absoluta))
|>
datos count(cultivo, sort = TRUE, name = "frec_absoluta") |>
mutate(frec_abs_acum = cumsum(frec_absoluta),
frec_relativa = frec_absoluta / sum(frec_absoluta),
frec_rel_acum = cumsum(frec_relativa))
<-
tabla_frec_absolutas table(df_tomate$departamento, df_tomate$desagregacion_cultivo, df_tomate$ano)
tabla_frec_absolutas
, , = 2019
Tomate Tomate invernadero
Amazonas 0 0
Antioquia 55 67
Arauca 1 0
Atlántico 3 0
Bolívar 2 0
Boyacá 51 58
Caldas 23 11
Caquetá 3 0
Casanare 2 0
Cauca 35 15
Cesar 15 0
Chocó 2 0
Córdoba 1 0
Cundinamarca 55 42
Huila 70 0
La Guajira 20 0
Magdalena 17 0
Meta 4 0
Nariño 27 46
Norte de Santander 57 6
Putumayo 0 1
Quindío 8 11
Risaralda 6 10
Santander 72 32
Sucre 0 0
Tolima 23 3
Valle del Cauca 69 16
Vichada 0 0
, , = 2020
Tomate Tomate invernadero
Amazonas 2 0
Antioquia 55 77
Arauca 0 0
Atlántico 4 0
Bolívar 2 0
Boyacá 49 60
Caldas 24 13
Caquetá 4 2
Casanare 2 1
Cauca 33 15
Cesar 15 2
Chocó 2 0
Córdoba 2 0
Cundinamarca 60 43
Huila 67 3
La Guajira 19 0
Magdalena 18 0
Meta 4 2
Nariño 29 46
Norte de Santander 57 6
Putumayo 0 0
Quindío 9 9
Risaralda 6 8
Santander 78 37
Sucre 0 0
Tolima 25 3
Valle del Cauca 70 21
Vichada 0 0
, , = 2021
Tomate Tomate invernadero
Amazonas 2 0
Antioquia 56 78
Arauca 0 0
Atlántico 4 0
Bolívar 2 0
Boyacá 48 57
Caldas 25 13
Caquetá 4 2
Casanare 2 1
Cauca 32 16
Cesar 15 2
Chocó 2 0
Córdoba 2 0
Cundinamarca 57 48
Huila 64 6
La Guajira 20 0
Magdalena 19 0
Meta 4 2
Nariño 29 48
Norte de Santander 58 7
Putumayo 0 0
Quindío 11 10
Risaralda 3 11
Santander 80 37
Sucre 1 0
Tolima 24 7
Valle del Cauca 72 22
Vichada 0 0
, , = 2022
Tomate Tomate invernadero
Amazonas 2 0
Antioquia 58 83
Arauca 0 0
Atlántico 6 0
Bolívar 3 0
Boyacá 39 73
Caldas 20 16
Caquetá 4 2
Casanare 2 0
Cauca 33 17
Cesar 16 2
Chocó 2 0
Córdoba 2 0
Cundinamarca 62 51
Huila 62 6
La Guajira 20 0
Magdalena 18 0
Meta 4 4
Nariño 27 52
Norte de Santander 57 9
Putumayo 1 1
Quindío 10 10
Risaralda 3 11
Santander 80 40
Sucre 0 0
Tolima 25 10
Valle del Cauca 71 23
Vichada 1 0
, , = 2023
Tomate Tomate invernadero
Amazonas 2 0
Antioquia 56 75
Arauca 0 0
Atlántico 6 0
Bolívar 3 0
Boyacá 40 73
Caldas 20 17
Caquetá 4 2
Casanare 2 0
Cauca 32 17
Cesar 16 2
Chocó 2 0
Córdoba 1 0
Cundinamarca 57 54
Huila 63 6
La Guajira 20 0
Magdalena 17 0
Meta 4 4
Nariño 28 55
Norte de Santander 58 12
Putumayo 1 1
Quindío 10 10
Risaralda 2 10
Santander 80 44
Sucre 0 0
Tolima 26 13
Valle del Cauca 70 28
Vichada 0 0
<-
tabla_frec_relativa prop.table(tabla_frec_absolutas)
tabla_frec_relativa
, , = 2019
Tomate Tomate invernadero
Amazonas 0.0000000000 0.0000000000
Antioquia 0.0109846215 0.0133812662
Arauca 0.0001997204 0.0000000000
Atlántico 0.0005991612 0.0000000000
Bolívar 0.0003994408 0.0000000000
Boyacá 0.0101857400 0.0115837827
Caldas 0.0045935690 0.0021969243
Caquetá 0.0005991612 0.0000000000
Casanare 0.0003994408 0.0000000000
Cauca 0.0069902137 0.0029958059
Cesar 0.0029958059 0.0000000000
Chocó 0.0003994408 0.0000000000
Córdoba 0.0001997204 0.0000000000
Cundinamarca 0.0109846215 0.0083882564
Huila 0.0139804274 0.0000000000
La Guajira 0.0039944078 0.0000000000
Magdalena 0.0033952467 0.0000000000
Meta 0.0007988816 0.0000000000
Nariño 0.0053924506 0.0091871380
Norte de Santander 0.0113840623 0.0011983223
Putumayo 0.0000000000 0.0001997204
Quindío 0.0015977631 0.0021969243
Risaralda 0.0011983223 0.0019972039
Santander 0.0143798682 0.0063910525
Sucre 0.0000000000 0.0000000000
Tolima 0.0045935690 0.0005991612
Valle del Cauca 0.0137807070 0.0031955263
Vichada 0.0000000000 0.0000000000
, , = 2020
Tomate Tomate invernadero
Amazonas 0.0003994408 0.0000000000
Antioquia 0.0109846215 0.0153784701
Arauca 0.0000000000 0.0000000000
Atlántico 0.0007988816 0.0000000000
Bolívar 0.0003994408 0.0000000000
Boyacá 0.0097862992 0.0119832235
Caldas 0.0047932894 0.0025963651
Caquetá 0.0007988816 0.0003994408
Casanare 0.0003994408 0.0001997204
Cauca 0.0065907729 0.0029958059
Cesar 0.0029958059 0.0003994408
Chocó 0.0003994408 0.0000000000
Córdoba 0.0003994408 0.0000000000
Cundinamarca 0.0119832235 0.0085879768
Huila 0.0133812662 0.0005991612
La Guajira 0.0037946874 0.0000000000
Magdalena 0.0035949670 0.0000000000
Meta 0.0007988816 0.0003994408
Nariño 0.0057918914 0.0091871380
Norte de Santander 0.0113840623 0.0011983223
Putumayo 0.0000000000 0.0000000000
Quindío 0.0017974835 0.0017974835
Risaralda 0.0011983223 0.0015977631
Santander 0.0155781905 0.0073896545
Sucre 0.0000000000 0.0000000000
Tolima 0.0049930098 0.0005991612
Valle del Cauca 0.0139804274 0.0041941282
Vichada 0.0000000000 0.0000000000
, , = 2021
Tomate Tomate invernadero
Amazonas 0.0003994408 0.0000000000
Antioquia 0.0111843419 0.0155781905
Arauca 0.0000000000 0.0000000000
Atlántico 0.0007988816 0.0000000000
Bolívar 0.0003994408 0.0000000000
Boyacá 0.0095865788 0.0113840623
Caldas 0.0049930098 0.0025963651
Caquetá 0.0007988816 0.0003994408
Casanare 0.0003994408 0.0001997204
Cauca 0.0063910525 0.0031955263
Cesar 0.0029958059 0.0003994408
Chocó 0.0003994408 0.0000000000
Córdoba 0.0003994408 0.0000000000
Cundinamarca 0.0113840623 0.0095865788
Huila 0.0127821051 0.0011983223
La Guajira 0.0039944078 0.0000000000
Magdalena 0.0037946874 0.0000000000
Meta 0.0007988816 0.0003994408
Nariño 0.0057918914 0.0095865788
Norte de Santander 0.0115837827 0.0013980427
Putumayo 0.0000000000 0.0000000000
Quindío 0.0021969243 0.0019972039
Risaralda 0.0005991612 0.0021969243
Santander 0.0159776313 0.0073896545
Sucre 0.0001997204 0.0000000000
Tolima 0.0047932894 0.0013980427
Valle del Cauca 0.0143798682 0.0043938486
Vichada 0.0000000000 0.0000000000
, , = 2022
Tomate Tomate invernadero
Amazonas 0.0003994408 0.0000000000
Antioquia 0.0115837827 0.0165767925
Arauca 0.0000000000 0.0000000000
Atlántico 0.0011983223 0.0000000000
Bolívar 0.0005991612 0.0000000000
Boyacá 0.0077890953 0.0145795886
Caldas 0.0039944078 0.0031955263
Caquetá 0.0007988816 0.0003994408
Casanare 0.0003994408 0.0000000000
Cauca 0.0065907729 0.0033952467
Cesar 0.0031955263 0.0003994408
Chocó 0.0003994408 0.0000000000
Córdoba 0.0003994408 0.0000000000
Cundinamarca 0.0123826643 0.0101857400
Huila 0.0123826643 0.0011983223
La Guajira 0.0039944078 0.0000000000
Magdalena 0.0035949670 0.0000000000
Meta 0.0007988816 0.0007988816
Nariño 0.0053924506 0.0103854604
Norte de Santander 0.0113840623 0.0017974835
Putumayo 0.0001997204 0.0001997204
Quindío 0.0019972039 0.0019972039
Risaralda 0.0005991612 0.0021969243
Santander 0.0159776313 0.0079888157
Sucre 0.0000000000 0.0000000000
Tolima 0.0049930098 0.0019972039
Valle del Cauca 0.0141801478 0.0045935690
Vichada 0.0001997204 0.0000000000
, , = 2023
Tomate Tomate invernadero
Amazonas 0.0003994408 0.0000000000
Antioquia 0.0111843419 0.0149790294
Arauca 0.0000000000 0.0000000000
Atlántico 0.0011983223 0.0000000000
Bolívar 0.0005991612 0.0000000000
Boyacá 0.0079888157 0.0145795886
Caldas 0.0039944078 0.0033952467
Caquetá 0.0007988816 0.0003994408
Casanare 0.0003994408 0.0000000000
Cauca 0.0063910525 0.0033952467
Cesar 0.0031955263 0.0003994408
Chocó 0.0003994408 0.0000000000
Córdoba 0.0001997204 0.0000000000
Cundinamarca 0.0113840623 0.0107849011
Huila 0.0125823847 0.0011983223
La Guajira 0.0039944078 0.0000000000
Magdalena 0.0033952467 0.0000000000
Meta 0.0007988816 0.0007988816
Nariño 0.0055921710 0.0109846215
Norte de Santander 0.0115837827 0.0023966447
Putumayo 0.0001997204 0.0001997204
Quindío 0.0019972039 0.0019972039
Risaralda 0.0003994408 0.0019972039
Santander 0.0159776313 0.0087876972
Sucre 0.0000000000 0.0000000000
Tolima 0.0051927302 0.0025963651
Valle del Cauca 0.0139804274 0.0055921710
Vichada 0.0000000000 0.0000000000
margin.table(tabla_frec_relativa, margin = 1)
Amazonas Antioquia Arauca Atlántico
0.0015977631 0.1318154584 0.0001997204 0.0045935690
Bolívar Boyacá Caldas Caquetá
0.0023966447 0.1094467745 0.0363491112 0.0053924506
Casanare Cauca Cesar Chocó
0.0023966447 0.0489314959 0.0169762333 0.0019972039
Córdoba Cundinamarca Huila La Guajira
0.0015977631 0.1056520871 0.0693029758 0.0197723188
Magdalena Meta Nariño Norte de Santander
0.0177751148 0.0063910525 0.0772917915 0.0653085680
Putumayo Quindío Risaralda Santander
0.0009986020 0.0195725984 0.0139804274 0.1158378270
Sucre Tolima Valle del Cauca Vichada
0.0001997204 0.0317555422 0.0922708209 0.0001997204
ftable(tabla_frec_relativa)
2019 2020 2021 2022 2023
Amazonas Tomate 0.0000000000 0.0003994408 0.0003994408 0.0003994408 0.0003994408
Tomate invernadero 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
Antioquia Tomate 0.0109846215 0.0109846215 0.0111843419 0.0115837827 0.0111843419
Tomate invernadero 0.0133812662 0.0153784701 0.0155781905 0.0165767925 0.0149790294
Arauca Tomate 0.0001997204 0.0000000000 0.0000000000 0.0000000000 0.0000000000
Tomate invernadero 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
Atlántico Tomate 0.0005991612 0.0007988816 0.0007988816 0.0011983223 0.0011983223
Tomate invernadero 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
Bolívar Tomate 0.0003994408 0.0003994408 0.0003994408 0.0005991612 0.0005991612
Tomate invernadero 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
Boyacá Tomate 0.0101857400 0.0097862992 0.0095865788 0.0077890953 0.0079888157
Tomate invernadero 0.0115837827 0.0119832235 0.0113840623 0.0145795886 0.0145795886
Caldas Tomate 0.0045935690 0.0047932894 0.0049930098 0.0039944078 0.0039944078
Tomate invernadero 0.0021969243 0.0025963651 0.0025963651 0.0031955263 0.0033952467
Caquetá Tomate 0.0005991612 0.0007988816 0.0007988816 0.0007988816 0.0007988816
Tomate invernadero 0.0000000000 0.0003994408 0.0003994408 0.0003994408 0.0003994408
Casanare Tomate 0.0003994408 0.0003994408 0.0003994408 0.0003994408 0.0003994408
Tomate invernadero 0.0000000000 0.0001997204 0.0001997204 0.0000000000 0.0000000000
Cauca Tomate 0.0069902137 0.0065907729 0.0063910525 0.0065907729 0.0063910525
Tomate invernadero 0.0029958059 0.0029958059 0.0031955263 0.0033952467 0.0033952467
Cesar Tomate 0.0029958059 0.0029958059 0.0029958059 0.0031955263 0.0031955263
Tomate invernadero 0.0000000000 0.0003994408 0.0003994408 0.0003994408 0.0003994408
Chocó Tomate 0.0003994408 0.0003994408 0.0003994408 0.0003994408 0.0003994408
Tomate invernadero 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
Córdoba Tomate 0.0001997204 0.0003994408 0.0003994408 0.0003994408 0.0001997204
Tomate invernadero 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
Cundinamarca Tomate 0.0109846215 0.0119832235 0.0113840623 0.0123826643 0.0113840623
Tomate invernadero 0.0083882564 0.0085879768 0.0095865788 0.0101857400 0.0107849011
Huila Tomate 0.0139804274 0.0133812662 0.0127821051 0.0123826643 0.0125823847
Tomate invernadero 0.0000000000 0.0005991612 0.0011983223 0.0011983223 0.0011983223
La Guajira Tomate 0.0039944078 0.0037946874 0.0039944078 0.0039944078 0.0039944078
Tomate invernadero 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
Magdalena Tomate 0.0033952467 0.0035949670 0.0037946874 0.0035949670 0.0033952467
Tomate invernadero 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
Meta Tomate 0.0007988816 0.0007988816 0.0007988816 0.0007988816 0.0007988816
Tomate invernadero 0.0000000000 0.0003994408 0.0003994408 0.0007988816 0.0007988816
Nariño Tomate 0.0053924506 0.0057918914 0.0057918914 0.0053924506 0.0055921710
Tomate invernadero 0.0091871380 0.0091871380 0.0095865788 0.0103854604 0.0109846215
Norte de Santander Tomate 0.0113840623 0.0113840623 0.0115837827 0.0113840623 0.0115837827
Tomate invernadero 0.0011983223 0.0011983223 0.0013980427 0.0017974835 0.0023966447
Putumayo Tomate 0.0000000000 0.0000000000 0.0000000000 0.0001997204 0.0001997204
Tomate invernadero 0.0001997204 0.0000000000 0.0000000000 0.0001997204 0.0001997204
Quindío Tomate 0.0015977631 0.0017974835 0.0021969243 0.0019972039 0.0019972039
Tomate invernadero 0.0021969243 0.0017974835 0.0019972039 0.0019972039 0.0019972039
Risaralda Tomate 0.0011983223 0.0011983223 0.0005991612 0.0005991612 0.0003994408
Tomate invernadero 0.0019972039 0.0015977631 0.0021969243 0.0021969243 0.0019972039
Santander Tomate 0.0143798682 0.0155781905 0.0159776313 0.0159776313 0.0159776313
Tomate invernadero 0.0063910525 0.0073896545 0.0073896545 0.0079888157 0.0087876972
Sucre Tomate 0.0000000000 0.0000000000 0.0001997204 0.0000000000 0.0000000000
Tomate invernadero 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
Tolima Tomate 0.0045935690 0.0049930098 0.0047932894 0.0049930098 0.0051927302
Tomate invernadero 0.0005991612 0.0005991612 0.0013980427 0.0019972039 0.0025963651
Valle del Cauca Tomate 0.0137807070 0.0139804274 0.0143798682 0.0141801478 0.0139804274
Tomate invernadero 0.0031955263 0.0041941282 0.0043938486 0.0045935690 0.0055921710
Vichada Tomate 0.0000000000 0.0000000000 0.0000000000 0.0001997204 0.0000000000
Tomate invernadero 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
cor(x = df_tomate$area_sembrada_ha,
y = df_tomate$rendimiento_t_ha,
method = "pearson")
[1] 0.1096174
|>
df_tomate group_by(desagregacion_cultivo) |>
reframe(correlacion = cor(area_sembrada_ha, rendimiento_t_ha))
cor(x = df_tomate$area_sembrada_ha,
y = df_tomate$rendimiento_t_ha,
method = "spearman")
[1] 0.05773466
cor(x = df_tomate$area_sembrada_ha,
y = df_tomate$rendimiento_t_ha,
method = "kendall")
[1] 0.04063416
library(skimr)
|>
df_tomate skim()
Name | df_tomate |
Number of rows | 5007 |
Number of columns | 18 |
_______________________ | |
Column type frequency: | |
character | 12 |
numeric | 6 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
codigo_dane_departamento | 0 | 1 | 2 | 2 | 0 | 28 | 0 |
departamento | 0 | 1 | 4 | 18 | 0 | 28 | 0 |
codigo_dane_municipio | 0 | 1 | 5 | 5 | 0 | 518 | 0 |
municipio | 0 | 1 | 3 | 26 | 0 | 494 | 0 |
desagregacion_cultivo | 0 | 1 | 6 | 18 | 0 | 2 | 0 |
cultivo | 0 | 1 | 6 | 6 | 0 | 1 | 0 |
ciclo_del_cultivo | 0 | 1 | 11 | 11 | 0 | 1 | 0 |
grupo_cultivo | 0 | 1 | 10 | 10 | 0 | 1 | 0 |
subgrupo | 0 | 1 | 19 | 19 | 0 | 1 | 0 |
periodo | 0 | 1 | 5 | 5 | 0 | 10 | 0 |
nombre_cientifico_del_cultivo | 0 | 1 | 23 | 23 | 0 | 1 | 0 |
estado_fisico_del_cultivo | 0 | 1 | 9 | 9 | 0 | 1 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
ano | 0 | 1 | 2021.05 | 1.41 | 2019 | 2020.00 | 2021 | 2022.00 | 2023 | ▇▇▇▇▇ |
area_sembrada_ha | 0 | 1 | 18.24 | 36.49 | 0 | 3.00 | 7 | 18.00 | 750 | ▇▁▁▁▁ |
area_cosechada_ha | 0 | 1 | 17.51 | 35.98 | 0 | 3.00 | 7 | 17.79 | 750 | ▇▁▁▁▁ |
produccion_t | 0 | 1 | 847.27 | 2813.69 | 0 | 62.20 | 190 | 595.00 | 51360 | ▇▁▁▁▁ |
rendimiento_t_ha | 0 | 1 | 40.22 | 34.06 | 0 | 16.74 | 28 | 55.00 | 188 | ▇▂▂▁▁ |
codigo_del_cultivo | 0 | 1 | 1052901.37 | 0.48 | 1052901 | 1052901.00 | 1052901 | 1052902.00 | 1052902 | ▇▁▁▁▅ |
library(summarytools)
|>
df_tomate dfSummary()